

$$
x^{3}-6^{\prime} 156 x^{2}+12^{\prime} 631^{\prime} 328 x-8^{\prime} 638^{\prime} 755^{\prime} 840=0
$$

"Why is it important for today's kids to learn algebra? Because I had to learn this junk in school and now it's your turn, that's why!"

Frank and Ernest

1	1	M	(1803) Guglielmo Libri Carucci dalla Sommaja (1878) Agner Krarup Erlang (1894) Satyendranath Bose (1912) Boris Gnedenko	$\begin{aligned} & \hline \text { RM132 } \\ & \text { RM168 } \end{aligned}$
	2	T	(1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko	RM240
	3	W	(1777) Louis Poinsot (1917) Yuri Alexeievich Mitropolsky	
	4	T	(1643) Isaac Newton	RM071
	5	F	(1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan (1871) Federigo Enriques (1871) Gino Fano	$\begin{aligned} & \text { RM288 } \\ & \text { RM276 } \\ & \text { RM084 } \end{aligned}$
	6	S	(1807) Jozeph Mitza Petzval (1841) Rudolf Sturm	
	7	S	(1871) Felix Edouard Justin Émile Borel (1907) Raymond Edward Alan Christopher Paley (1925) Walter Noll	
2	8	M	(1888) Richard Courant (1924) Paul Moritz Cohn (1942) Stephen William Hawking	RM156
	9	T	(1864) Vladimir Adreievich Steklov (1882) Pavel Aleksandrovitch Florenskij (1915) Mollie Orshansky	RM252
	10	W	(1875) Issai Schur (1905) Ruth Moufang	
	11	T	(1545) Guidobaldo del Monte (1707) Vincenzo Riccati (1734) Achille Pierre Dionis du Sejour	RM120
	12	F	(1853) Gregorio Ricci-Curbastro (1906) Kurt August Hirsch (1915) Herbert Ellis Robbins	RM156
	13	S	(1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart (1876) Erhard Schmidt (1902) Karl Menger	
	14	S	(1901) Alfred Tarski	RM096
3	15	M	(1704) Johann Castillon (1717) Mattew Stewart (1850) Sofia Vasilievna Kovalevskaya	RM144
	16	T	(1801) Thomas Klausen	
	17	W	(1647) Catherina Elisabetha Koopman Hevelius (1847) Nikolay Egorovich Zukowsky (1858) Gabriel Koenigs	RM264
	18	T	(1856) Luigi Bianchi (1880) Paul Ehrenfest	RM204
	19	F	(1813) Rudolf Friedrich Alfred Clebsch (1879) Guido Fubini (1908) Aleksandr Gennadievich Kurosh	
	20	S	(1775) André Marie Ampère (1895) Gabor Szegő (1904) Renato Caccioppoli	RM072
	21	S	(1846) Pieter Hendrik Schoute (1882) Pavel Aleksandrovitch Florenskij (1915) Yuri Vladimirovich Linnik	RM252
4	22	M	(1561) Francis Bacon (1592) Pierre Gassendi (1886) John William Navin Sullivan (1908) Lev Davidovich Landau	RM228
	23	T	(1840) Ernst Abbe (1862) David Hilbert	RM060
	24	W	(1891) Abram Samoilovitch Besicovitch (1902) Oskar Morgenstern (1914) Vladimir Petrovich Potapov	
	25	T	(1627) Robert Boyle (1736) Joseph-Louis Lagrange (1843) Karl Hermann Amandus Schwarz	RM048
	26	F	(1799) Benoît Paul Émile Clapeyron (1849) Francesco Flores D'Arcais (1862) Eliakim Hastings Moore	
	27	S	(1832) Charles Lutwidge Dodgson	RM108
	28	S	(1611) Johannes Hevelius (1701) Charles Marie de La Condamine (1888) Louis Joel Mordell (1892) Carlo Emilio Bonferroni	RM264
5	29	M	(1817) William Ferrel (1888) Sidney Chapman	
	30	T	(1619) Michelangelo Ricci	RM216
			(1715) Giovanni Francesco Fagnano dei Toschi (1841) Samuel Loyd (1896) Sofia Alexandrovna Janowskaja	RM192

Rudi Mathematici

January

Putnam 2009, A1

Let f be a real-valued function on the plane such that for every square $A B C D$ in the plane, $f(A)+f(B)+f(C)+$ $f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plane?

How to put an elephant into a refrigerator

Analysis
Method 1: Differentiate the elephant, put it in the refrigerator, and then integrate it into the refrigerator domain.
Method 2: Redefine the refrigerator metric.
Method 3: Apply the Banach-Tarsky Theorem.

Murphy's Laws applied to Math Students

When you solve a problem, it always helps to know the answer.

For many parts of Nature can neither be invented with sufficient subtlety, nor demonstrated with sufficient perspicuity, nor accommodated unto use with sufficient dexterity, without the aid and intervening of the mathematics, of which sort are perspective, music, astronomy, cosmography, architecture, engineery, and divers others.

Francis Bacon

Treat nature by the cylinder, the sphere, the cone, everything in proper perspective so that each side of an object or a plane is directed towards a central point.

Paul Cézanne
It is therefore with the study of mathematics, and only through it, that one can form a correct and in-depth idea of what a science is.

Auguste Comte
The straight line is not a thing, but our concept of reality. And if we cannot reveal the concrete content of this concept, if the extent of its application is equal to zero, then this concept does not exist.

Pavel Aleksandrovitch Florenskij
Since the mathematical sciences are so vast and varied, it is necessary to limit their practice and teaching, since every human activity is linked to places and people.

David Hilbert
To speak algebraically, Mr. M. is execrable, but Mr. G. is $(x+1)$-ecrable.
[Discussing fellow writers Cornelius Mathews and William Ellery Channing.].

Edgar Allan Poe
If a body previously at rest begin to move, we may be certain that this is only in virtue of some extraneous cause acting upon it. This cause, whatever it may be, and which is known to us only by its effects, we call Force. Force then is any cause whatever of motion.

Louis Poinsot

Rudi Mathematici

February

Putnam 2009, A2
Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{aligned}
f^{\prime} & =2 f^{2} g h+\frac{1}{g h}, & & f(0)=1 \\
g^{\prime} & =f g^{2} h+\frac{4}{f h} & & g(0)=1 \\
h^{\prime} & =3 f g h^{2}+\frac{1}{f g} & & h(0)=1
\end{aligned}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0 .

How to put an elephant into a refrigerator
Number Theory
Method 1: Factor the elephant, put the factors in the refrigerator, multiply them together inside the refrigerator.
Method 2: Use induction: if the $n^{\text {th }}$ piece fit, the $(n+1)^{\text {th }}$ piece will also fit.

Murphy's Laws applied to Math Students

An expression can be made equal to any other expression if you juggle it enough.

Epur si muove (And yet it does move).
[Apocryphal words to himself after making his abjuration of heliocentricity.].

Galileo Galilei

A science is said to be useful if its development tends to accentuate the existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life.

Godfried Harold Hardy
It is well known that the man who first made public the theory of irrationals perished in a shipwreck in order that the inexpressible and unimaginable should ever remain veiled. And so the guilty man, who fortuitously touched on and revealed this aspect of living things, was taken to the place where he began and there is for ever beaten by the waves.

Proclo Diadoco

It is a profoundly erroneous truism, repeated by all copy books and by eminent people when they are making speeches, that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case. Civilization advances by extending the number of important operations which we can perform without thinking about them.

Alfred North Whitehead

Rudi Mathematici

March

Putnam 2009, A3

Let d_{n} be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \ldots, \cos n^{2}$. (For example,

$$
d_{3}=\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\cos 4 & \cos 5 & \cos 6 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right|
$$

The argument of cos is always in radians, not degrees.) Evaluate $\lim _{n \rightarrow \infty} d_{n}$.

How to put an elephant into a refrigerator
Algebra
Method 1: Prove that the elephant parts can be placed in the refrigerator, then prove that the refrigerator is closed with respect to addition
Method 2: Generalize the refrigerator and define a surjection of the refrigerator on the elephant.

Murphy's Laws applied to Math Students

Proofs don't convince anybody of anything.

For example, when I imagine a triangle, although perhaps there is no such figure anywhere in the world outside of my thoughts, and there never has been, nevertheless there does not cease to be a certain nature, or shape or form of this figure. determinate essence, which is immutable and eternal; neither did I invent it, nor does it depend on my spirit in any way; as is clear from the fact that different properties of this triangle can be demonstrated, namely that its three angles are equal to two nets, that the larger angle is subtended by the larger side, and other similar ones, which now, let whether I like it or not, I recognize with all clarity and evidence that I am in it, although I had not previously thought of it in any way, when I first imagined a triangle; and therefore it cannot be said that I composed and invented them.

René Descartes

God does not care about our mathematical difficulties. He integrates empirically.

Albert Einstein
God is a child; and when he started playing, he cultivated mathematics. He is the most divine of human games.

Vinzenz Erath
Regular combinations occur more rarely only because they are fewer in number. If we look for a cause where we perceive a symmetry it is not because we consider that a symmetrical event is less possible than the others, but because this event must be the effect of a regular cause or chance, and the first of these suppositions is more probable than the second.

Pierre-Simon De Laplace
When you place a bet at less than the correct odds, which always happens against any organized betting agency, you are paying the operator a percentage fee for the privilege of placing a bet. The probability of winning will be what mathematicians call a "negative expected value." When you follow a system, you make a series of bets, each of which has a negative expected value. There is no way to add minuses to get a plus...

John Scarne

	141	M	(1640) Georg Mohr (1776) Marie-Sophie Germain (1895) Alexander Craig Aitken	RM219
	2	T	(1878) Edward Kasner (1934) Paul Joseph Cohen (1984) Alessio Figalli	RM243
	3	W	(1835) John Howard Van Amringe (1892) Hans Rademacher (1900) Albert Edward Ingham (1971) Alice Riddle	
	4	T	(1809) Benjamin Peirce (1842) François Édouard Anatole Lucas (1949) Shing-Tung Yau	RM123 RM279
	5	F	(1588) Thomas Hobbes (1607) Honoré Fabri (1622) Vincenzo Viviani (1869) Sergei Alexeievich Chaplygin	
	6	S	(1801) William Hallowes Miller	
	7	S	(1768) François-Joseph Français	
	158	M	(1903) Marshall Harvey Stone	
	9	T	(1791) George Peacock (1816) Charles Eugene Delaunay (1865) Karl August Rudolph Steinmetz (1894) Cypra Cecilia Krieger Dunaij (1919) John Presper Heckert	RM291
	10	W	(1857) Henry Ernest Dudeney	RM183
	11	T	(1953) Andrew John Wiles	RM207
	12	F	(1794) Germinal Pierre Dandelin (1852) Carl Louis Ferdinand von Lindemann (1903) Jan Tinbergen	RM267
	13	S	(1728) Paolo Frisi (1813) Duncan Farquharson Gregory (1869) Ada Isabel Maddison (1879) Francesco Severi (1909) Stanislaw Marcin Ulam	RM171
	14	S	(1629) Christiaan Huygens	RM135
	1615	M	(1452) Leonardo da Vinci (1548) Pietro Antonio Cataldi (1707) Leonhard Euler (1809) Herman Gunther Grassmann	RM051
	16	T	(1682) John Hadley (1823) Ferdinand Gotthold Max Eisenstein	
	17	W	(1798) Étienne Bobillier (1853) Arthur Moritz Schonflies (1863) Augustus Edward Hough Love	
	18	T	(1791) Ottaviano Fabrizio Mossotti (1907) Lars Valerian Ahlfors (1918) Hsien Chung Wang (1949) Charles Louis Fefferman	RM150
	19	F	(1880) Evgeny Evgenievich Slutsky (1883) Richard von Mises (1901) Kiyoshi Oka (1905) Charles Ehresmann	
	20	S	(1839) Francesco Siacci	
	21	S	(1652) Michel Rolle (1774) Jean Baptiste Biot (1875) Teiji Takagi	RM231
	1722	M	(1811) Otto Ludwig Hesse (1887) Harald August Bohr (1935) Bhama Srinivasan (1939) Sir Michael Francis Atiyah	RM063
	23	T	(1858) Max Karl Ernst Ludwig Planck (1910) Sheila Scott Macintyre	
	24	W	(1863) Giovanni Vailati (1899) Oscar Zariski	RM099
	25	T	(1849) Felix Christian Klein (1900) Wolfgang Pauli (1903) Andrei Nicolayevich Kolmogorov	RM255 RM159
	26	F	(1889) Ludwig Josef Johan Wittgenstein	
	27	S	(1755) Marc-Antoine Parseval des Chenes (1932) Gian-Carlo Rota	RM195
	28	S	(1906) Kurt Gödel	RM087
	$18 \quad 29$	M	(1854) Jules Henri Poincaré	RM075
	30	T	(1777) Johann Carl Friedrich Gauss (1916) Claude Elwood Shannon	RM147 RM111

Rudi Mathematici

Putnam 2009, A4
Let S be a set of rational numbers such that
(a) $0 \in S$;
(b) If $x \in S$ then $x+1 \in S$ and $x-1 \in S$; and
(c) If $x \in S$ and $x \notin\{0 ; 1\}$, then $1 /(x(x-1)) \in S$.

Must S contain all rational numbers?

How to put an elephant into a refrigerator

Topology
Method 1: Given the elephant outside the refrigerator, reverse the refrigerator topologically.
Method 2: Use a Klein bottle as a refrigerator.
Method 3: The elephant is compact, so it can be placed in a finite set of refrigerators.
Method 4: Prove that the property of being in the refrigerator is hereditary, then put the elephant's mother in the refrigerator.

Murphy's Laws applied to Math Students

Notes you understood perfectly in class transform themselves into hieroglyphics at home.

In short, Gödel's theorem establishes the impossibility of guaranteeing the non-contradiction of mathematics while remaining within mathematics itself. It seems like a paradox, but the strength of mathematics which should have consisted in its ability to prove every statement logically, now comes to simply demonstrate its own inability to prove. An atmosphere of tragedy, with Gödel in the role of Euripides.

Vittorino Andreoli
In pure mathematics we contemplate absolute truths which existed in the divine mind before the morning stars sang together, and which will continue to exist there when the last of their rays has fallen from heaven.

Edward Everett
The real traditional donut has the topology of a sphere. It is a matter of taste to consider it with separate internal and external surfaces. What is important is that the internal space must be filled with good raspberry jam. This is also a matter of taste.

Peter B. Fellgett
Pauca sed matura [His motto:] Few, but ripe.
Johann Carl Friedrich Gauss
The science of mathematics presents the most brilliant example of how pure reason can successfully expand its domain without the aid of experience.

Immanuel Kant
Mathematical discoveries, small or great are never born of spontaneous generation They always presuppose a soil seeded with preliminary knowledge and well prepared by labour, both conscious and subconscious.

Jules Henri Poincarè
Anyone who knows a mathematical proposition does not necessarily know something.

Ludwig Josef Johan Wittgenstein

	1	T	(1825) Johann Jacob Balmer (1908) Morris Kline (1926) Peter Lax (1977) Maryam Mirzakhani	$\begin{aligned} & \text { RM122 } \\ & \text { RM289 } \\ & \text { RM189 } \end{aligned}$
	2		(1860) D'Arcy Wentworth Thompson (1905) Kazimierz Zarankiewitz	RM138
	3	F	(1842) Otto Stolz (1860) Vito Volterra (1892) George Paget Thomson	RM136 RM161
	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	(1845) William Kingdon Clifford	
			(1833) Lazarus Emmanuel Fuchs (1883) Anna Johnson Pell Wheeler (1889) René Eugène Gateaux (1897) Francesco Giacomo Tricomi (1923) Cathleen Synge Morawetz	RM196 RM256
19	6	M	(1872) Willem de Sitter (1906) André Weil	RM088
	7	T	(1854) Giuseppe Veronese (1881) Ebenezer Cunningham (1896) Pavel Sergieievich Alexandrov (1926) Alexis Claude Clairaut	RM220
	8	W	(1859) Johan Ludwig William Valdemar Jensen (1905) Winifred Lydia Caunden Sargent	
	9	T	(1746) Gaspard Monge (1876) Gilbert Ames Bliss (1965) Karen Ellen Smith	RM208
	10	F	(1788) Augustin Jean Fresnel (1847) William Karl Joseph Killing (1904) Edward James Mcshane (1958) Piotr Rezierovich Silverbrahms	
	11	S	(1902) Edna Ernestine Kramer Lassar (1918) Richard Phillips Feynman	RM076
	12	S	(1820) Florence Nightingale (1845) Pierre René Jean Baptiste Henry Brocard (1902) Frank Yates	RM104
20	13	M	(1750) Lorenzo Mascheroni (1899) Pelageia Yakovlevna Polubarinova Kochina	
	14	T	(1832) Rudolf Otto Sigismund Lipschitz (1863) John Charles Fields	RM100
	15	W	(1939) Brian Hartley (1964) Sijue Wu	
	16	T	(1718) Maria Gaetana Agnesi (1821) Pafnuti Lvovi Chebyshev (1911) John (Jack) Todd	RM112 RM139
	17	F	(1940) Alan Kay	
	18	S	(1850) Oliver Heaviside (1892) Bertrand Arthur William Russell	$\begin{aligned} & \hline \text { RM160 } \\ & \text { RM052 } \\ & \hline \end{aligned}$
	19	S	(1865) Flora Philip (1919) Georgii Dimitirievich Suvorov	
21	20	M	(1861) Henry Seely White	
	21	T	(1471) Albrecht Dürer (1792) Gustave Gaspard de Coriolis	RM124
	22	W	(1865) Alfred Cardew Dixon	
	23	T	(1914) Lipa Bers	RM148
	24	F	(1544) William Gilbert	
	25	S	(1838) Karl Mikailovich Peterson (1979) Elena Tosato	RM268
	26	S	(1667) Abraham de Moivre (1896) Yuri Dimitrievich Sokolov	RM280
22	27	M	(1862) John Edward Campbell	
	28	T	(1676) Jacopo Francesco Riccati (1710) Johann (II) Bernoulli	$\begin{aligned} & \text { RM232 } \\ & \text { RM093 } \end{aligned}$
	29	W	(1882) Harry Bateman	
	30	T	(1814) Eugene Charles Catalan	RM184
		F	(1912) Wu Chien Shiung (Madame Wu) (1926) John Kemeny	RM292

Rudi Mathematici

May

Putnam 2009, A5
Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ?

How to put an elephant into a refrigerator

Algebraic Topology
Replace the inside of the refrigerator with its universal cover (\mathbb{R}^{3}).

Murphy's Laws applied to Math Students

Textbooks are written for those who already know the subject

Deduction, which takes us from the general proposition to facts again - teaches us, if I may so say, to anticipate from the ticket what is inside the bundle.

Thomas Henry Huxley
"But," you might say, "none of this shakes my belief that 2 and 2 are 4." You are quite right, except in marginal cases - and it is only in marginal cases that you are doubtful whether a certain animal is a dog or a certain length is less than a meter. Two must be two of something, and the proposition " 2 and 2 are 4 " is useless unless it can be applied. Two dogs and two dogs are certainly four dogs, but cases arise in which you are doubtful whether two of them are dogs. "Well, at any rate there are four animals", you may say. But there are microorganisms concerning which it is doubtful whether they are animals or plants. "Well, then living organisms", you say. But there are things of which it is doubtful whether they are living organisms or not. You will be driven into saying: "Two entities and two entities are four entities." When you have told me what you mean by "entity", we will resume the argument.

Bertrand Arthur William Russell
Some people think that, within mathematics, arithmetic, algebra and geometry are separate subjects: this is a serious mistake. Instead, they all collaborate with each other, help each other, and are sometimes interchangeable.

Malba Tahan
When I heard the cultured astronomer,
When demonstrations and figures were lined up before me,
when they showed me maps and diagrams to add, divide and measure them,
when I sat down to listen to the astronomer's seminar amidst a thousand applause in the room, oh, how soon I got tired and fed up, until I got up and slipped away, running away, in the mystical misty night air, and from time to time I gazed at the stars in perfect silence.

Walt Whitman

	1	S	(1796) Sadi Leonard Nicolas Carnot (1851) Edward Bailey Elliott (1899) Edward Charles Titchmarsh	
	2	S	(1895) Tibor Radó	
23	3	M	(1659) David Gregory (1954) Susan Landau	
	4	T	(1809) John Henry Pratt (1966) Svetlana Yakovlev	RM197
	5	W	(1814) Pierre Laurent Wantzel (1819) John Couch Adams (1883) John Maynard Keynes (1941) Nikolai Vladimirovic Krylov	$\begin{aligned} & \text { RM065 } \\ & \text { RM281 } \\ & \text { RM269 } \\ & \text { RM286 } \end{aligned}$
	6	T	(1436) Johann Müller Regiomontanus (1857) Aleksandr Michailovitch Lyapunov (1906) Max August Zorn	RM185 RM077
	78	F\mathbf{S}	(1863) Edward Burr Van Vleck	
			(1625) Giovanni Domenico Cassini (1858) Charlotte Angas Scott (1860) Alicia Boole Stott (1896) Eleanor Pairman (1923) Gloria Olive (1924) Samuel Karlin	RM245 RM209
	9	S	(1885) John Edensor Littlewood	RM049
24	10	M	(940) Mohammad Abu'L Wafa Al-Buzjani (1887) Vladimir Ivanovich Smirnov	$\begin{aligned} & \hline \text { RM257 } \\ & \text { RM101 } \end{aligned}$
	11	T	(1881) Hilda Phoebe Hudson (1937) David Bryant Mumford	
	12	W	(1888) Zygmunt Janyszewski (1937) Vladimir Igorevich Arnold	RM221
	13	T	(1831) James Clerk Maxwell (1872) Jessie Chrystal Macmillan (1876) William Sealey Gosset (Student) (1928) John Forbes Nash	RM113 RM149
	14	F	(1736) Charles Augustin de Coulomb (1856) Andrei Andreyevich Markov (1903) Alonzo Church	$\begin{aligned} & \text { RM125 } \\ & \text { RM233 } \\ & \hline \end{aligned}$
	15	S	(1640) Bernard Lamy (1894) Nikolai Gregorievich Chebotaryov	
	16	S	(1915) John Wilder Tukey	
25	17	$\begin{gathered} \mathbf{M} \\ \mathbf{T} \end{gathered}$	(1898) Maurits Cornelius Escher	RM097
	18		(1858) Andrew Russell Forsyth (1884) Charles Ernest Weatherburn (1884) Frieda Nugel (1913) Paul Teichmüller (1915) Alice Turner Schafer	RM148
	19	W	(1623) Blaise Pascal (1902) Wallace John Eckert	RM053
	20	T	(1873) Alfred Loewy (1917) Helena Rasiowa	
	21	F	(1781) Simeon Denis Poisson (1828) Giuseppe Bruno (1870) Clara Immerwahr	$\begin{aligned} & \hline \text { RM293 } \\ & \text { RM182 } \end{aligned}$
	22	S	(1822) Mario Pieri (1864) Hermann Minkowsky (1910) Konrad Zuse (1932) Mary Wynne Warner	
	23	23 S	(1912) Alan Mathison Turing	RM089
26	24	M	(1880) Oswald Veblen	
	25	T	(1908) William Van Orman Quine	
	26	W	(1824) William Thomson, Lord Kelvin (1918) Yudell Leo Luke	RM161
	27	T	(1806) Augustus de Morgan	
	28	F	(1875) Henri Léon Lebesgue	RM173
	29	S	(1888) Aleksandr Aleksandrovich Friedmann (1979) Artur Avila Cordeiro de Melo	$\begin{aligned} & \hline \text { RM101 } \\ & \text { RM189 } \end{aligned}$
	30	S	(1791) Felix Savart (1958) Abigail Thompson	

Putnam 2009, A6
Let $f:[0 ; 1]^{2} \rightarrow \mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^{2}$. Let $a=\int_{0}^{1} f(0, y) d y, \quad b=$ $\int_{0}^{1} f(1, y) d y, \quad c=\int_{0}^{1} f(x, 0) d x, \quad d=\int_{0}^{1} f(x, 1) d x$. Prove or disprove: There must be a point ($\mathrm{x}_{0} ; \mathrm{y}_{0}$) in $(0 ; 1)^{2}$ such that

How to put an elephant into a refrigerator

Linear Algebra
Method 1: Define an orthonormal basis for the elephant and place the basis in the refrigerator.
Method 2: Show that part of the elephant can fit into the refrigerator; if the operator is linear, all parts can fit into the refrigerator.

Murphy's Laws applied to Math Students

Any simple idea can be expressed in incomprehensible terms.

If you add 3 and 5, you get 8 ; the three-ity of 3 and the five-ity of 5 have merged and lost in the eight-ity of 8, like two drops of water coming together. However, if you add 3 to 5i, you get the complex number 3+5i, a drop of water and a drop of oil - linear independence.

John Derbyshire
Mathematics seems ever to teach us two lessons: there is no limit to our mind's ingenuity; and there is even less of a limit to the intransigence of the world.

Robert \& Ellen Kaplan
Unfortunately, as soon as people talk about huge numbers, they seem to go crazy. They seem to be under the impression that since zero equals nothing, they can add any number of zeros to a number without any practical consequences.
E. Kasner, J.R. Newman

A precisian professor had the habit of saying: "... quartic polynomial $a x^{4}+b x^{3}+c x^{2}+d x+e$, where e need not be the base of the natural logarithms.".

John Edensor Littlewood
Words differently arranged have a different meaning and meanings differently arranged have a different effect.

Blaise Pascal
Sometimes a proof introduces the mathematicians into a whole new world of mathematical ideas that would never have been known without that proof. Igor Rostislavovich Shafarevich

27	1	M	(1643) Gottfried Wilhelm von Leibniz (1788) Jean-Victor Poncelet (1906) Jean Alexandre Eugène Dieudonné	$\begin{aligned} & \text { RM054 } \\ & \text { RM246 } \end{aligned}$
	2	T	(1820) William John Racquorn Rankine (1852) William Burnside (1925) Olga Arsen'evna Oleinik	
	3	W	(1807) Ernest Jean Philippe Fauque de Jonquières (1897) Jesse Douglas	RM162
	4	T	(1906) Daniel Edwin Rutherford (1917) Michail Samoilovich Livsic	
	5	F	(1936) James Mirrlees	
	6	S	(1849) Alfred Bray Kempe	
	7	S	(1816) Johann Rudolf Wolf (1906) William Feller (1922) Vladimir Aleksandrovich Marchenko	
28	8	M	(1760) Christian Kramp (1904) Henri Paul Cartan	RM126
	9	T	(1845) George Howard Darwin (1931) Valentina Mikhailovna Borok	RM138 RM197
	10	W	(1856) Nikola Tesla (1862) Roger Cotes (1868) Oliver Dimon Kellogg	RM174
	11	T	(1857) Sir Joseph Larmor (1888) Jacob David Tamarkin (1890) Giacomo Albanese	RM101
	12	F	(1875) Ernest Sigismund Fischer (1895) Richard Buckminster Fuller (1935) Nicolas Bourbaki	$\begin{aligned} & \text { RM066 } \\ & \text { RM126 } \\ & \hline \end{aligned}$
	13	S	(1527) John Dee (1741) Karl Friedrich Hindenburg	RM234
	14	S	(1671) Jacques D'Allonville (1793) George Green	RM078
29	15	M	(1865) Wilhelm Wirtinger (1898) Mary Taylor Slow (1906) Adolph Andrej Pavlovich Yushkevich	
	16	T	(1678) Jakob Hermann (1903) Irmgard Flugge-Lotz	
	17	W	(1831) Victor Mayer Amédeé Mannheim (1837) Wilhelm Lexis (1944) Krystyna Maria Trybulec Kuperberg	
	18	T	(1013) Hermann von Reichenau (1635) Robert Hooke (1853) Hendrik Antoon Lorentz	RM282 RM114 RM161
	19	F	(1768) Francois Joseph Servois	
	20	S	(1876) Otto Blumenthal (1947) Gerd Binnig	$\begin{aligned} & \hline \text { RM258 } \\ & \text { RM222 } \end{aligned}$
	21	S	(1620) Jean Picard (1848) Emil Weyr (1849) Robert Simpson Woodward (1861) Herbert Ellsworth Slaught	
30	22	M	(1784) Friedrich Wilhelm Bessel	RM198
	23	T	(1775) Étienne-Louis Malus (1854) Ivan Slezynsky	
	24	W	(1851) Friedrich Hermann Schottky (1871) Paul Epstein (1923) Christine Mary Hamill	
	25	T	(1808) Johann Benedict Listing	
	26	F	(1903) Kurt Mahler	
	27	S	(1667) Johann Bernoulli (1801) George Biddel Airy (1848) Lorand Baron von Eötvös (1867) Derrick Norman Lehmer (1871) Ernst Friedrich Ferdinand Zermelo	RM093 RM210 RM215 RM090
	28	S	(1954) Gerd Faltings	RM222
31	29	M	(1898) Isidor Isaac Rabi	RM294
	30	T	(1889) Vladimir Kosma Zworkyn	
		W	(1704) Gabriel Cramer (1712) Johann Samuel Koenig (1926) Hilary Putnam	RM186

Putnam 2009, B1
Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

How to put an elephant into a refrigerator

Affine geometry
There is a similar transformation that puts the elephant into the refrigerator.

Murphy's Laws applied to Math Students

The answers you need are not at the back of the book.
An anagram, an acrostic (only in part), a palindrome, a crossword puzzle function like so many mathematical equations: the solver who faces them knows that in his resolution he will be helped by the necessity that every element present on one side of the equal sign must also be present on the other, and that given the unknowns the final account must be zero-sum. In these cases, puzzles are a language subjected to the litmus test.

Claudio Bartocci
There will come a time when the proper education of children, by a glorified system of spontaneous education of choice, similar to the Montessori System, will be made possible. Children, as well as grown-ups, in their individual, glorified, drudgery-proof homes of Labrador, the tropics, the Orient, or where you will, to which they can pass with pleasure and expedition by means of everimproving transportation, will be able to tune in their television and radio to the moving picture lecture of, let us say, President Lowell of Harvard; the professor of Mathematics of Oxford; of the doctor of Indian antiquities of Delhi, etc. Education by choice, with its marvelous motivating psychology of desire for truth, will make life ever cleaner and happier, more rhythmical and artistic.

Richard Buckminster Fuller
By the help of microscopes, there is nothing so small, as to escape our inquiry; hence there is a new visible world discovered to the understanding.

Robert Hooke
A person's aesthetic and intellectual life cannot be complete unless it includes an appreciation for the power and beauty of mathematics. To put it simply, aesthetic and intellectual fulfilment requires knowing a little math.

Jerry P. King
I do not think there is any thrill that can go through the human heart like that felt by the inventor as he sees some creation of the brain unfolding to success... Such emotions make a man forget food, sleep, friends, love, everything.

Nikola Tesla

Rudi Mathematici

August

Putnam 2009, B2
A game involves jumping to the right on the real number line. If a and b are real numbers and $b>a$, the cost of jumping from a to b is $b^{3}-a b^{2}$. For what real numbers c can one travel from 0 to 1 in a finite number of jumps with total cost exactly c ?

How to put an elephant into a refrigerator

Set Theory
Since \{Refrigerator\}=\{Elephant\}, the elephant and the refrigerator have the same cardinality.

Murphy's Laws applied to Math Students

No matter how much you studied for any exams, it will never be enough.

I shall devote all my efforts to bring light into the immense obscurity that today reigns in Analysis. It so lacks any plan or system, that one is really astonished that there are so many people who devote themselves to it - and, still worse, it is absolutely devoid of any rigor.

Niels Henrik Abel
...the certitude of mathematics is contained in the syntactic rigour of demonstrations.

Francesco Barozzi
This is the main fault of the doctrinaire spirit that invades our school. We teach to be wary of approximation, which is reality, to adopt the idol of a perfection which is illusory.
[...] if for the sake of culture, we suffocate the practical sense and spirit of initiative in these disciples, we are failing in the greatest of our duties.

Guido Castelnuovo

God is a mathematician of a very high order and He used advanced mathematics in constructing the universe.

Paul Adrien Maurice Dirac
Mathematics is the most tolerant of disciplines, it is based on a single certainty: if two people discuss for long enough in the end they must agree, perhaps on which hypotheses to assume, and they will find an agreement that they will both be ready to defend with the same determination towards others.

Furio Honsell
Games are among the most interesting creations of the human mind, and the analysis of their structure is full of adventure and surprises. Unfortunately, there is never a lack of mathematicians for the job of transforming delectable ingredients into a dish that tastes like a damp blanket.

James R. Newman

Rudi Mathematici

September

Putnam 2009, B3

Call a subset S of $\{1,2, \ldots, n\}$ mediocre if it has the following property: Whenever a and b are elements of S whose average is an integer, that average is also an element of S. Let $A(n)$ be the number of mediocre subsets of $\{1,2, \ldots, n\}$. [For instance, every subset of $\{1,2,3\}$ except $\{1,3\}$ is mediocre, so $A(3)=7$.] Find all positive integers n such that $A(n+2)-2 A(n+1)+A(n)=1$.

How to put an elephant into a refrigerator

Geometry
Axiom: An elephant can be put in the refrigerator.

Murphy's Laws applied to Math Students

The problems you know how to solve never come up in the exam.

There is a difficulty connected to infinity that concerns the mathematician. If infinity is not actual and the size of the universe is finite, his theorems on numbers will not be true for all numbers, but only for a finite number of them; and the mathematician will not be able to extend his lines and planes indefinitely to demonstrate certain geometric theorems.

Aristotle
Shouting at the monkeys in the tree opposite. That's what brains evolved into. Not math or physics.

Jack Cohen, Terry Pratchett, Ian Stewart
Enraged, the Beast twisted its double and triple integrals to counter the polynomials with which the king tried to hit it, slipped into an infinite series of indeterminate terms, then rose again, raising itself to a power, but the king attacked it with a series of partial derivations and totals to zero all its coefficients (see Riemann's Lemma), and in the ensuing confusion the builders completely lost sight of the king and the beast.

Stanislaw Lem
Despite all the experience I may have gained in music from having associated myself so much with it, I must confess that only with the help of mathematics have my ideas become clear.

Jean-Philippe Rameau
No discipline is more suited than mathematics to giving the sense, to those who possess it, of an indestructible spiritual treasure, a set of solid knowledge that can never prove to be incorrect.

Gaetano Scorza
Since Hardy's time the world has also changed. A typical day for the great Cambridge scholar consisted of a maximum of four hours of intense reflection on research problems while the rest of the time was spent playing cricket, Hardy's great passion in addition to mathematics, and reading newspapers. There probably remained space for some sporadic meetings with students, but Hardy was reticent on personal matters.

Ian Nicholas Stewart

	1	T	(1671) Luigi Guido Grandi (1898) Bela Kerekjarto’ (1912) Kathleen Timpson Ollerenshaw	RM177
	2	W	(1825) John James Walker (1908) Arthur Erdélyi	
	3	T	(1944) Pierre René Deligne	
	4	F	(1759) Louis Francois Antoine Arbogast (1797) Jerome Savary	
	5	S	(1732) Nevil Maskelyne (1781) Bernhard Placidus Johann Nepomuk Bolzano (1861) Thomas Little Heath	RM117
	6	S	(1552) Matteo Ricci (1831) Julius Wilhelm Richard Dedekind (1908) Sergei Lvovich Sobolev	RM141 RM081
41	7	$\begin{gathered} \mathbf{M} \\ \mathbf{T} \\ \mathbf{W} \end{gathered}$	(1885) Niels Bohr	RM063
	8		(1908) Hans Arnold Heilbronn	
	9		(1581) Claude Gaspard Bachet de Meziriac (1704) Johann Andrea von Segner (1854) Mihajlo Idvorski Pupin (1873) Karl Schwarzschild (1949) Fan Rong K Chung Graham	RM201 RM297 RM153 RM110
	10	T	(1731) Henry Cavendish (1861) Heinrich Friedrich Karl Ludwig Burkhardt	RM273
	11	F	(1675) Samuel Clarke (1777) Barnabè Brisson (1881) Lewis Fry Richardson (1885) Alfred Haar (1910) Cahit Arf	RM261
	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	(1860) Elmer Sperry	
			(1890) Georg Feigl (1893) Kurt Werner Friedrich Reidemeister (1932) John Griggs Thomson	
42	14	M	(1687) Robert Simson (1801) Joseph Antoine Ferdinand Plateau (1868) Alessandro Padoa	
	15	T	(1608) Evangelista Torricelli (1735) Jesse Ramsden (1776) Peter Barlow (1931) Eléna Wexler-Kreindler	RM165
	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathbf{W} \\ & \mathbf{T} \end{aligned}$	(1879) Philip Edward Bertrand Jourdain	
			(1759) Jacob (II) Bernoulli (1888) Paul Isaac Bernays	RM093
	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathbf{F} \\ & \mathbf{S} \end{aligned}$	(1945) Margaret Dusa Waddington Mcduff	RM249
			(1903) Jean Frédéric Auguste Delsarte (1910) Subrahmanyan Chandrasekhar	RM153
	20	S	(1632) Sir Christopher Wren (1863) William Henry Young (1865) Aleksandr Petrovich Kotelnikov	RM105
43	21	M	(1677) Nicolaus (I) Bernoulli (1823) Enrico Betti (1855) Giovan Battista Guccia (1893) William Leonard Ferrar (1914) Martin Gardner	RM093 RM150 RM129 RM137
	22	T	$\begin{aligned} & \text { (1587) Joachim Jungius } \\ & \text { (1895) Rolf Herman Nevanlinna } \\ & \text { (1907) Sarvadaman Chowla } \end{aligned}$	RM285
	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathbf{W} \\ & \mathbf{T} \end{aligned}$	(1865) Piers Bohl	
			(1804) Wilhelm Eduard Weber (1873) Edmund Taylor Whittaker	
	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	$\begin{gathered} \mathbf{F} \\ \mathbf{S} \end{gathered}$	(1811) Évariste Galois	RM069
			(1849) Ferdinand Georg Frobenius (1857) Charles Max Mason (1911) Shiing-Shen Chern	
	27	S	(1678) Pierre Remond de Montmort (1856) Ernest William Hobson	
44			(1804) Pierre François Verhulst	
			(1925) Klaus Roth	
			(1906) Andrej Nikolaevich Tichonov (1946) William Paul Thurston	RM237
	31	T	(1711) Laura Maria Caterina Bassi (1815) Karl Theodor Wilhelm Weierstrass (1935) Ronald Lewis Graham	RM189 RM057 RM110

October

Putnam 2009, B4

Say that a polynomial with real coefficients in two variables, x, y is balanced if the average value of the polynomial on each circle centered at the origin is 0 . The balanced polynomials of degree at most 2009 form a vector space V over \mathbb{R}. Find the dimension of V.

How to put an elephant into a refrigerator

Complex Analysis
Put the refrigerator at the origin and the elephant outside the unit circle, then you get the image by inversion.

Murphy's Laws applied to Math Students

The problem that definitely won't come up on the exam, will come up on the exam.

One may ask the question as to the extent to which the quest for beauty is an aim in the pursuit of science.... It is, indeed, an incredible fact that what the human mind, at its deepest and most profound, perceives as beautiful finds its realization in external nature. What is intelligible is also beautiful.

Subrahmanyan Chandrasekhar
[From the preface to his final manuscript.] Since the beginning of the century, computational procedures have become so complicated that any progress by those means has become impossible, without the elegance which modern mathematicians have brought to bear on their research, and by means of which the spirit comprehends quickly and in one step a great many computations.
It is clear that elegance, so vaunted and so aptly named, can have no other purpose. ...
Go to the roots, of these calculations! Group the operations. Classify them according to their complexities rather than their appearances! This, I believe, is the mission of future mathematicians. This is the road on which I am embarking in this work.

Évariste Galois

Well, as you know, there are 24 hours in every day. And if that's not enough, you've always got the nights!

Ronald Lewis Graham

What is brought to light by the intellect cannot condescend to falsehood.

Matteo Ricci
Geometry alone, among the liberal disciplines, exercises and sharpens the ingenuity and makes it suitable to be an ornament of the city in peace and to defend it in war [...] other things being equal, in fact, the ingenuity that is exercised in geometric gymnastics he possesses a very particular and virile strength.

Evangelista Torricelli

Rudi Mathematici

November

Putnam 2009, B5
Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that

$$
f^{\prime}(x)=\frac{x^{2}-(f(x))^{2}}{x^{2}\left((f(x))^{2}+1\right)} \text { for all } x>1 .
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=\infty$.

How to put an elephant into a refrigerator
Numerical Analysis
Place the elephant's trunk in the refrigerator and define the rest of the elephant as a rounding error.

Murphy's Laws applied to Math Students

The answer to the problem you couldn't solve during the exam will become obvious after you hand in your paper.

The fact that its arguments can in principle be resolved makes mathematics unique. There is no mathematical equivalent of astronomers who still believe in the steadystate cosmological theory, or of biologists who with great conviction hold very different ideas about what can be explained by natural selection, or of philosophers who fundamentally disagree about the relationship between awareness and the physical world, or of economists who follow different schools of thought such as monetarism and neo-Keynesianism.

William Timothy Gowers
Every spiritual audacity today rests on the exact sciences. We do not learn from Goethe, Hebbel, Hölderlin, but from Mach, Lorentz, Einstein, Minkowski, from Couturat, Russell, Peano [...] The program of every single work of art can be this: mathematical audacity, dissolution of consciousness in the elements, unlimited permutation of these elements; everything is related to everything else, and develops from this.

Robert Musil
Man is confined within the narrow limits of the body, as in a prison, but mathematics frees him, and makes him greater than the entire universe. [...] Tossed here and there, aimlessly, by the storm of passions, mathematics restores his inner peace, harmoniously resolving the opposing movements of the soul, and bringing it back, under the guidance of reason, to agreement and harmony.

Petrus Ramus
The superstitious masses hold it as an axiom that God's judgments far transcend human intellect. Such a doctrine could be enough to hide the truth from the human race for all eternity, if mathematics had not provided us with another comparison of truth, considering only the essences and properties of things without taking into account their final causes.

Baruch Spinoza
Anyone who has heard the same thing said by 12,000 eyewitnesses has only 12,000 probabilities, which are equal to a strong probability, which in turn is far from certainty.

Voltaire

	1	S	(1792) Nikolay Yvanovich Lobachevsky (1847) Christine Ladd-Franklin	RM083
49	2	M	(1831) Paul David Gustav du Bois-Reymond (1901) George Frederick James Temple	
	3	T	(1903) Sidney Goldstein (1924) John Backus	
		$\begin{aligned} & \mathbf{W} \\ & \mathbf{T} \end{aligned}$	(1795) Thomas Carlyle	
			(1868) Arnold Johannes Wilhelm Sommerfeld (1901) Werner Karl Heisenberg (1907) Giuseppe Occhialini	RM275 RM155 RM122
	67	F	(1682) Giulio Carlo Fagnano dei Toschi	
			(1823) Leopold Kronecker (1830) Antonio Luigi Gaudenzio Giuseppe Cremona (1924) Mary Ellen Rudin	$\begin{aligned} & \hline \text { RM239 } \\ & \text { RM150 } \end{aligned}$
	8	S	(1508) Regnier Gemma Frisius (1865) Jaques Salomon Hadamard (1919) Julia Bowman Robinson	$\begin{aligned} & \text { RM263 } \\ & \text { RM227 } \end{aligned}$
50	9	M	(1883) Nikolai Nikolaievich Luzin (1906) Grace Brewster Murray Hopper (1917) Sergei Vasilovich Fomin	RM214
	10	T	(1804) Karl Gustav Jacob Jacobi (1815) Augusta Ada King Countess Of Lovelace	$\begin{aligned} & \text { RM251 } \\ & \text { RM059 } \end{aligned}$
	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathbf{W} \\ & \mathbf{T} \end{aligned}$	(1882) Max Born	RM155
			(1832) Peter Ludwig Mejdell Sylow (1913) Emma Castelnuovo	RM191
	13	F	(1724) Franz Ulrich Theodosius Aepinus (1887) George Pólya	RM131
	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	SS	(1546) Tycho Brahe	
			(1802) János Bolyai (1923) Freeman John Dyson	RM083
51	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{gathered} \mathbf{M} \\ \mathbf{T} \end{gathered}$	(1804) Wiktor Yakovievich Bunyakowsky	
			(1706) Gabrielle Émilie Le Tonnelier de Breteuil du Châtelet (1835) Felice Casorati (1842) Marius Sophus Lie (1900) Dame Mary Lucy Cartwright	RM299
	18	W	(1856) Joseph John Thomson (1917) Roger Lyndon (1942) Lenore Blum	RM161
	19	T	(1783) Charles Julien Brianchon (1854) Marcel Louis Brillouin (1887) Charles Galton Darwin	RM138
	20	F	(1494) Oronce Fine (1648) Tommaso Ceva (1737) Tommaso Valperga di Caluso (1875) Francesco Paolo Cantelli	RM203 RM287
	21	S	(1878) Jan Łukasiewicz (1921) Edith Hirsch Luchins (1932) John Robert Ringrose	
	22	S	(1824) Francesco Brioschi (1859) Otto Ludwig Hölder (1869) Dimitri Fedorovich Egorov (1877) Tommaso Boggio (1887) Srinivasa Aiyangar Ramanujan	RM150 RM214
52	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\begin{gathered} \mathbf{M} \\ \mathbf{T} \end{gathered}$	(1872) Georgii Yurii Pfeiffer	
			(1822) Charles Hermite (1868) Emmanuel Lasker	RM095 RM167
	25	W	(1642) Isaac Newton (1900) Antoni Zygmund	RM071
	26	T	(1780) Mary Fairfax Greig Somerville (1791) Charles Babbage (1937) John Horton Conway	$\begin{aligned} & \text { RM059 } \\ & \text { RM119 } \end{aligned}$
	27	F	(1571) Johannes Kepler (1654) Jacob (Jacques) Bernoulli	RM093
	28	S	(1808) Louis Victoire Athanase Dupré (1882) Arthur Stanley Eddington (1903) John von Neumann	RM179 RM107
	29	S	(1856) Thomas Jan Stieltjes	
53	30	M	(1897) Stanislaw Saks	
	31	T	(1872) Volodymyr Levitsky (1896) Carl Ludwig Siegel (1945) Leonard Adleman (1952) Vaughan Frederick Randall Jones	RM143

December

Putnam 2009, B6

Prove that for every positive integer n, there is a sequence of integers $a_{0}, a_{1}, \ldots, a_{2009}$ with $a_{0}=0$ and $a_{2009}=n$ such that each term after a_{0} is either an earlier term plus 2^{k} for some nonnegative integer k, or of the form $b \bmod c$ for some earlier positive terms b and c.
[Here b mode denotes the remainder when b is divided by c, so $0 \leq(b \bmod c)<c$.].

How to put an elephant into a refrigerator

Statistics
Cut off the elephant's tail, place it in the refrigerator, and consider it a representative sample of the entire elephant.

Murphy's Laws applied to Math Students

Every problem is harder than it looks and takes longer than you expected.

Although for most of us [the law of universal gravitation] is of no practical use, we can all appreciate its elegant conciseness. A couple of small multiplications, a simple division and there you go: wherever you are, you can know your gravitational position.

Bill Bryson

It is true that Fourier was of the opinion that the main purpose of mathematics was public utility and the explanation of natural phenomena; but a philosopher like him should have known that the only purpose of science is to honor the human mind, and in this regard a question about number theory is as valid as a question about how the world is made.

Karl Gustav Jacob Jacobi

The ability to do mathematics has supported and fuelled trust in human reason, and at the same time rooted a superhuman vision of mathematics.

Gabriele Lolli
Numero pondere et mensura Deus omnia condidit God created everything by number, weight and measure.

Isaac Newton
There are many questions fools can ask, that wise men cannot answer.

George Polya
Einstein: "You know, Henri, I used to study mathematics, but I left it for physics."
Poincaré: "Oh, really, Albert? But why?"
Einstein: "Because although I could distinguish true statements from false ones, I could not determine which facts were important."
Poincaré: "This is very interesting, Albert, because originally I studied physics, but I left it for mathematics." Einstein: "Really? Why?"
Poincaré: "Because I was unable to say which of the important facts were true."

David Singmaster

